EconPapers    
Economics at your fingertips  
 

Refined lithium-ion battery state of health estimation with charging segment adjustment

Kun Zheng, Jinhao Meng, Zhipeng Yang, Feifan Zhou, Kun Yang and Zhengxiang Song

Applied Energy, 2024, vol. 375, issue C, No S0306261924014600

Abstract: Accurately monitoring the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for battery management systems (BMS), yet there lack of the possibility to fully use the random charging segments with any length. To this end, a residual convolution and transformer network (R-TNet) is proposed to enable an accurate LIB SOH estimation with the sparse dimension of feature in random segments, where the start and end voltage, the Ampere-hour (Ah) throughput, temperature, and current rate of a charging segment are required for the estimation task. Through the cross-attention mechanism of R-TNet, the operation condition and the position of the partial voltage can be integrated to enable the LIBs SOH estimation within a charging segment. To extend the flexibility with arbitrary charging behaviors, an ElasticNet-based feature transfer strategy is designed to use any charging length. 121 cells with different chemistries and cycling conditions are used to validate the performance of the proposed method. The results of the proposed method show that the root mean square error (RMSE) of SOH estimation can reach 1.6% even for a 50 mV voltage segment.

Keywords: State of health estimation; Residual convolution and transformer network; Charging segment; Feature transfer; ElasticNet (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924014600
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014600

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124077

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014600