EconPapers    
Economics at your fingertips  
 

Stochastic Optimization and Uncertainty Quantification of Natrium-based Nuclear-Renewable Energy Systems for Flexible Power Applications in Deregulated Markets

Manjur R. Basnet, Jacob A. Bryan, Seth J. Dana, Aiden S. Meek, Hailei Wang and Paul Talbot

Applied Energy, 2024, vol. 375, issue C, No S0306261924014880

Abstract: Rapid integration of variable renewable energy sources (VRES) has made modeling and stochastic optimization of hybrid energy systems crucial for studying their long-term performance and viability. However, most studies have focused on just historical data, which may be unreliable for capturing short-term fluctuations, rare events, and long-term patterns of energy demand, price, and the variability of renewable energy sources. For this study, optimal synthetic time series models were developed using Wasserstein distance. The models were validated by comparing the key statistical measures against those of the historical data. They were then used to optimize the integrated Natrium-style advanced energy systems and their long-term (30 years) economics. The stochastic model performs bi-level optimization to find the optimal sizes for the balance of plant and thermal energy storage, while also optimizing energy dispatch to achieve the maximum net present value.

Keywords: Synthetic time series; Optimization; Economics; Hybrid energy system; Deregulated markets (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924014880
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014880

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124105

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014880