High-power-density miniaturized packed-bed thermal energy storage unit via phase change material capsules
Cheng Yu,
Feifan Liu,
Xiangdong Liu,
Lin He,
Chengbin Zhang and
Yongping Chen
Applied Energy, 2024, vol. 375, issue C, No S0306261924015769
Abstract:
Miniaturized thermal energy storage (TES) units with phase change materials (PCMs) are promising for the production of portable thermal management devices. In this work, a 100 mm-scale miniaturized packed-bed thermal energy storage (PBTES) unit based on homemade PCM capsules fabricated via the microfluidic method is established. The thermohydrodynamic characteristics of this unit are experimentally studied and analyzed based on a comparison with a traditional shell-and-tube thermal energy storage (STTES) unit. A modified Ergun equation is obtained for predicting the pressure drop of the PBTES unit with good accuracy. The results indicate that with increasing heat transfer fluid (HTF) flow rate, the charging and discharging processes are shorter, and the charging and discharging rates are much higher. The increasing inlet temperature of the HTF produces a large temperature gradient along the axial direction of the PBTES unit and enhances the performance of the PBTES unit. Generally, the average charging rate and overall efficiency of the PBTES unit with an HTF flow rate of 0.5 L/min can reach 30.09 W and 76.99%, respectively. The average charging and discharging power densities of the PBTES unit at a flow rate of 0.5 L/min are 81.94 kW/m3 and 47.79 kW/m3, respectively, which are 39.8% and 242.8% higher than those of the STTES unit. This work demonstrates high-power-density PBTES technology for normal-temperature applications.
Keywords: Packed bed; Thermal energy storage; Phase change material capsule; High power density; Latent heat transfer (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924015769
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:375:y:2024:i:c:s0306261924015769
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124193
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().