EconPapers    
Economics at your fingertips  
 

Integrated three-stage decentralized scheduling for virtual power plants: A model-assisted multi-agent reinforcement learning method

Biao Xu, Wenpeng Luan, Jing Yang, Bochao Zhao, Chao Long, Qian Ai and Jiani Xiang

Applied Energy, 2024, vol. 376, issue PA, No S0306261924013680

Abstract: Virtual power plant (VPP) emerges as a promising integration and aggregation technology that facilitates the utilization of massive flexible demand-side resources (DSRs). However, non-negligible modeling errors and high-dimensional uncertainties involved in DSR aggregation threaten the delivery reliability and cost-effectiveness of VPP operation. To address this problem, this study proposes an integrated three-stage scheduling framework for VPPs and develops a model-assisted multi-agent reinforcement learning (MARL) approach. In the proposed framework, the VPP scheduling problem is formulated as a decentralized partially observable Markov Decision Process (Dec-POMDP), which depicts the complex interaction process among the three stages (bidding, re-dispatching and disaggregation). The interactions are evaluated by a comprehensive reward function, incorporating the trading and operation costs, as well as imbalance penalties. To enable decentralized decision-making, a model-assisted multi-agent proximal policy optimization (MA2PPO) algorithm is proposed, which trains a separate actor network for each aggregator. Additionally, the MA2PPO is augmented with a model-assisted safety decision-making method to accelerate the training process. Numerical simulation results verify that the proposed method enhances the delivery reliability and cost-effectiveness of the VPP, while achieving faster convergence time compared with purely model-free MARL methods.

Keywords: Integrated three-stage decentralized scheduling; demand-side resource; intraday market; multi-agent reinforcement learning; virtual power plant (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924013680
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924013680

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123985

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924013680