EconPapers    
Economics at your fingertips  
 

Aquifer Thermal Energy Storage for low carbon heating and cooling in the United Kingdom: Current status and future prospects

Matthew D. Jackson, Geraldine Regnier and Iain Staffell

Applied Energy, 2024, vol. 376, issue PA, No S030626192401479X

Abstract: Aquifer Thermal Energy Storage (ATES) is an underground thermal energy storage technology that provides large capacity (of order MWth to 10s MWth), low carbon heating and cooling to large buildings and building complexes, or district heating/cooling networks. The technology operates through seasonal capture, storage and re-use of thermal energy in shallow aquifers. ATES could make a significant contribution to decarbonising UK heating and cooling, but uptake is currently very low: eleven low temperature (LT-ATES) systems currently operating in the UK meet <0.01% of the UK’s heating and <0.5% of cooling demand. The Wandsworth Riverside Quarter development in London is analysed as a successful UK case study. The UK has large potential for widespread deployment of LT-ATES, due to its seasonal climate and the wide availability of suitable aquifers co-located with urban centres of high heating and cooling demand. ATES could supply ca. 61% of UK heating demand, and ca. 79% of cooling demand with a 13%–41% reduction in carbon emissions for heating, and 70%–94% reduction for cooling, compared to equivalent ground- or air-sourced heat pump systems. However, problems with design and operation in some UK systems have caused sub-optimal performance. The UK can benefit from experience of both successful and unsuccessful deployments but these need to be more widely reported. Raising awareness, developing policies to encourage uptake, streamlining regulations and developing expertise are essential to unlock the potential of ATES technology in the UK, which requires engagement with policymakers, regulators, industry stakeholders and the general public.

Keywords: Aquifer Thermal Energy Storage (ATES); Underground Thermal Energy Storage (UTES); Low carbon heating; Low carbon cooling; Sustainable energy; Geothermal energy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192401479X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pa:s030626192401479x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124096

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s030626192401479x