EconPapers    
Economics at your fingertips  
 

Augmenting insights from wind turbine data through data-driven approaches

Coleman Moss, Romit Maulik and Giacomo Valerio Iungo

Applied Energy, 2024, vol. 376, issue PA, No S0306261924014995

Abstract: Data-driven techniques can enable enhanced insights into wind turbine operations by efficiently extracting information from turbine data. This work outlines a data-driven strategy to augment these insights, describing its benefits and limitations. Different data-driven models are trained on supervisory control and data acquisition (SCADA) and meteorological data collected at an onshore wind farm. The developed models are used to predict wind speed, turbulence intensity (TI), and power capture for each turbine with excellent accuracy for different wind and atmospheric conditions. Modifications of the incoming freestream wind speed and TI due to the evolution of the wind field over the wind farm and effects associated with operating turbines are captured enabling modeling at the turbine level. Farm-level modeling is achieved by combining models predicting wind speed and TI at each turbine location from inflow conditions with models predicting power capture. Data-driven filters are also considered in the context of generating accurate data-driven models. In contrast to many current works that utilize simulated data, the proposed approach can describe subtle phenomena, such as speedups, TI damping, and wake-generated turbulence, from real-world turbine data. It is noteworthy that the accuracy achievable through data-driven modeling is limited by the quality of the data; therefore, guidelines are proposed to estimate resultant model performance from a given training set without the need to train or test a model.

Keywords: Machine learning; SCADA data; Wind turbine; Wind farm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924014995
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924014995

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124116

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924014995