EconPapers    
Economics at your fingertips  
 

Optimal aggregation and disaggregation for coordinated operation of virtual power plant with distribution network operator

Xin Liu, Xueshan Lin, Haifeng Qiu, Yang Li and Tao Huang

Applied Energy, 2024, vol. 376, issue PA, No S0306261924015253

Abstract: Virtual power plants (VPPs) offer an effective approach for managing distributed energy resources (DERs), including microturbines, distributed generators, demand response aggregators, and energy storage systems. This technology significantly enhances the economic efficiency and flexibility of distribution network systems. This study aims to facilitate a flexible power exchange between the distribution network system and the upper-level grid by aggregating the power flexibility of heterogeneous DERs via a VPP. Additionally, it introduces a methodology for optimal aggregation and disaggregation within a coordinated operation framework between the VPP and distribution network operator (DNO). On one hand, the VPP can determine its day-ahead feasible region and real-time flexible regulation power based on operational constraints of DERs and representative data provided by the DNO, circumventing the need for detailed network information. On the other hand, day-ahead and real-time correction procedures for the DER cost functions are proposed, effectively neutralizing the impact of network operational constraints on these cost functions. Consequently, precise cost functions for both the active power and the flexible regulation power aggregated by the VPP are derived. Employing this aggregated cost function enables the determination of a cost-minimized optimal scheduling solution in real-time by solving a fundamental economic dispatch problem, significantly alleviating computational demands. Finally, case studies demonstrate that the proposed method achieves an error in aggregated power of only 0.77%, compared to the precise computation method that requires comprehensive system information. The proposed optimal VPP disaggregation scheme exhibits power discrepancies of 0.63% and cost discrepancies of 0.91% relative to the precise method. Additionally, when implementing the most cost-effective demand response plan based on the proposed cost function, the average costs for aggregators are reduced by 19.7%.

Keywords: Virtual power plant; Optimal aggregation; Distribution network operator; Cost function; Demand response (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924015253
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015253

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124142

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015253