EconPapers    
Economics at your fingertips  
 

Investigation of a high-temperature combination heat pump for lower-cost electrification in multifamily buildings

Junyoung Kim, Nelson James and Jeff Maguire

Applied Energy, 2024, vol. 376, issue PA, No S0306261924016088

Abstract: The development of space and water heating combination heat pumps capable of generating water temperatures high enough for convective heat emitters will enable more cost-effective and equitable decarbonization solutions for electrifying multifamily buildings. In this paper, multifamily building models and a charge-sensitive mechanistic cycle model of a combination heat pump are developed, and the system performance is predicted based on the models. Unlike other state-of-the-art residential heat pumping equipment, the modeled combination heat pump using an economized, fluid-injected variable-speed compressor can achieve higher temperature lifts of 40° – 85°C, with lower installation costs and complexity. The model predicted heating coefficient of performance (COPh) is 2.1 at an ambient temperature of −15°C with a high-temperature lift of nearly 85°C, and a seasonal coefficient of performance in heating mode (SCOPh) ranges from 2 – 4 for different locations. The system shows 30% – 90% lower CO2eq emissions over a condensing gas boiler and 9% – 13% lower projected installation costs than two separate space and water heat pumping appliances.

Keywords: High-temperature heat pump; Combination heat pump; Modeling; Multifamily building; Electrification (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924016088
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016088

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124225

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016088