A nonparametric least squares regression method for forecasting building energy performance
William Chung and
Yong-Tong Chen
Applied Energy, 2024, vol. 376, issue PB, No S0306261924016027
Abstract:
The Convex Nonparametric Least Squares (CNLS) method assumes that the regression function is either concave or convex to forecast building energy performance. However, there may be instances where the regression function exhibits both concave and convex patterns, rendering this assumption invalid. This paper aims to address this drawback and to derive a new method called Monotone Nonparametric Least Squares (MNLS), which incorporates both concavity and convexity constraints in CNLS. It is proved that MNLS has a better goodness-of-fit performance compared to CNLS. Since MNLS contains both concave and convex portions, it is not sufficient to rely solely on the concavity assumption (or convexity assumption) during the forecasting process of building energy performance. To tackle this issue, using both concave and convex portions separately and then combining the resulting forecasts is suggested. An illustrative example is provided, and the energy performance of Hong Kong secondary schools is used as an application to demonstrate the goodness-of-fit of MNLS.
Keywords: Nonparametric methods; Regression analysis; Concavity; Convexity; Building energy consumption forecasting (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924016027
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016027
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124219
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().