Synchronisation of thermal imaging and multi-channel EIS to interpret planar array PCB fuel cell performance
Shangwei Zhou,
James Dale-Heaps,
Emre Tavkaya,
Wenjia Du,
Daniel Wan,
Ryan Wang,
Paul R. Shearing,
Dan J.L. Brett,
Erik Engebretsen and
Rhodri Jervis
Applied Energy, 2024, vol. 376, issue PB, No S0306261924016593
Abstract:
The planar design of printed circuit board (PCB) fuel cells offers the advantages of simple structure, rapid prototyping and easy manufacturing. However, uneven reactants and heat distribution in each PCB cell module often result in inconsistent overall performance. Current characterisation methods mainly focus on the study of the overall performance and lack the analysis of individual cells, which provide a limited understanding of localised electrochemical and thermal effects that might play a critical part in further optimising and diagnosing the cell performance of this category. We have developed a multi-channel impedance diagnostic technique for PCB fuel cells. Combining with thermal imaging, we could simultaneously diagnose individual open cathode cell modules by measuring the heat distribution and electrochemical impedance spectra (EIS) of 11 PCB cell modules. Hence, the correlation between heat distribution, internal resistance and performance of different sections of PCB fuel cells can be established. By comparing the fuel cell’s pristine and degraded, we demonstrated how this non-destructive technique could identify and locate cell modules with deteriorated performance, which would be beneficial to real-time diagnostics, quality control and optimisation. The multi-channel impedance measurement takes several seconds only through optimised multi-frequency perturbation and can be readily extended to stacks containing more cells by simply increasing the number of voltage sensors, which can be further adapted to other electrochemical devices.
Keywords: Open-cathode fuel cells; Multi-channel electrochemical impedance spectroscopy; Thermal imaging; Water management; Printed circuit board (PCB) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924016593
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016593
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124276
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().