EconPapers    
Economics at your fingertips  
 

An assessment methodology for the flexibility capacity of new power system based on two-stage robust optimization

Junhui Li, Zhenbo Yu, Gang Mu, Baoju Li, Jiaxu Zhou, Gangui Yan, Xingxu Zhu and Cuiping Li

Applied Energy, 2024, vol. 376, issue PB, No S030626192401674X

Abstract: The inherent variability in wind and solar power output presents a significant challenge to the flexibility balance of power systems. This paper introduces an innovative method for evaluating the flexibility capacity of a new power system, employing a two-stage robust optimization approach. Firstly, a power system flexibility supply and demand balance mechanism model is constructed and quantitatively characterized for the power system flexibility shortfalls set. Subsequently, taking into account timescale characteristics and directionality, the time series production simulation technique is applied to establish the effective ramping and flexibility supply distribution model of thermal power and energy storage units, enabling an analysis of the power system's supply regulation capabilities. On this basis, a power system flexibility capacity assessment method is proposed, which divides the system regulation resources into demand set and supply set, and constructs a power system flexibility capacity assessment model to ensure that the maximum system flexibility margin and the lowest operating cost are taken as the optimization objectives under the system security operation constraints. The column and constraint generation (C&CG) robust optimization algorithm is used to decompose the master problem and the max-min dual-layer subproblems for iterative solving, and the optimal capacity of each unit of the system in terms of output and flexibility is derived. Finally, the effectiveness and superiority of the proposed method is verified through case analysis, which shows that the method can improve the flexibility capacity by 14.9% and reduce the operating cost by 15.83% compared with the traditional proportional allocation method.

Keywords: Flexibility capacity assessment; Supply and demand characteristics; Robust optimization; Uncertainty; Renewable energy penetration rate (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192401674X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pb:s030626192401674x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124291

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s030626192401674x