Battery health-considered energy management strategy for a dual-motor two-speed battery electric vehicle based on a hybrid soft actor-critic algorithm with memory function
Changcheng Wu,
Jiankun Peng,
Jun Chen,
Hongwen He,
Dawei Pi,
Zhongwei Wang and
Chunye Ma
Applied Energy, 2024, vol. 376, issue PB, No S0306261924016891
Abstract:
Energy management strategies (EMSs) ease mileage anxiety and improve the health performance of battery electric vehicles (BEVs). This study proposes a soft actor-critic (SAC)-based EMS for dual-motor two-speed BEV to minimize electrical energy consumption and battery capacity losses. In addition, two optimization tricks are employed to optimize the original SAC. The linear mapping trick is integrated into the actor-network of SAC to enable agents to search for optimal EMS in a discrete (driving mode)-continuous (torque distribution) hybrid action space. The SAC-based EMS is modeled as a partially observable Markov decision process (POMDP) to obtain more information about the real state of the environment. Based on this, another optimization trick, the long short-term memory (LSTM) network, is integrated into the actor and critic of SAC to make full use of both historical and current environmental information. Simulation results show that the proposed method learns the optimal EMS, its converged episodes are shortened to the 97th, the health performance of the battery is the closest to the dynamic programming (DP)-based EMS, and maintains battery operating at a range of 30–40°C. In addition, the proposed EMS has the best adaptability in test cycles, reaching 99.42% and 99.29% of DP-based EMS, respectively.
Keywords: Dual-motor two-speed BEV; Energy management strategies; Linear mapping trick; Partially observable Markov decision process; Long short-term memory network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924016891
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016891
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124306
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().