DGImNet: A deep learning model for photovoltaic soiling loss estimation
Mingyu Fang,
Weixing Qian,
Tao Qian,
Qiwei Bao,
Haocheng Zhang and
Xiao Qiu
Applied Energy, 2024, vol. 376, issue PB, No S0306261924017185
Abstract:
Deep learning models have recently been introduced to photovoltaic (PV) soiling loss estimation tasks. Most PV soiling loss (PVSL) estimation models are based on a single image and the environmental factors at a specific time point, while the temporal characteristic of environmental factors is less utilized. DGImNet, a PVSL estimation model utilizing both PV panel images and time series environmental factors (TSEFs), is proposed. DGImNet takes a PV panel image and TSEFs of 50 continuous time points to estimate the PVSL. The TSEFs are processed by gate recurrent units to produce a 96D feature, while the image is extracted to generate another 96D feature by a set of analysis units. The multi-modal features are fused to yield estimation results. It is proved that the exploitation of TSEFs is beneficial to improve PVSL prediction performance, and the engagement of compact bilinear pooling is useful for better fusion of image and TSEF features. Cooperating with a real-time data collection system, the proposed model is able to run on edge computing devices and be employed for real-time PVSL estimation tasks in actual PV power stations.
Keywords: Photovoltaic soiling loss estimation; Deep learning; Multi-modal data fusion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924017185
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924017185
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124335
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().