EconPapers    
Economics at your fingertips  
 

Theoretical modeling and investigation of the influence of deaerator on the transient process in power plants

Shunyu Yao, Wenjie Zhang, Lei Xu, Xiaoze Du and Huimin Wei

Applied Energy, 2024, vol. 376, issue PB, No S0306261924017252

Abstract: Deaerator is one of the most important equipment for steady state and dynamic operation of power plants. The deaerator energy storage utilization process is one of the most essential ways to enhance the variable load rate of power plants. The purpose of this study is to improve the dynamic simulation performance of the deaerator during unit load changes by constructing a more reasonable deaerator model, aiming to provide guidance for practical operations. In this paper, a thermal mass microelement algorithm is proposed for the heat transfer between droplets and steam in the deaerator, followed by segmental modeling of the deaerator. By comparing with the operation data of a power plant, the steady state operation error of the deaerator model is within 0.6 %. Subsequently, the unit load variation process is simulated and the dynamic variation accuracy of the model proposed in this paper is enhanced by 1–2 % compared to the lumped parameter model. The dynamic characteristics of the deaerator are obtained by simulating the step and ramp changes of the deaerator boundary conditions and the deaerator start-up process. In addition, during the simulation of condensate throttling, the maximum power of the unit using the deaerator model in this paper is 0.2–1.5 MW larger than that of the lumped parameter model.

Keywords: Deaerator; Direct contact condensation; Droplet heat transfer; Dynamic simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924017252
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924017252

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124342

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924017252