Numerical simulation on combined production of hydrate and free gas from silty clay reservoir in the South China Sea by depressurization: Formation sealing
Fanfan Qin,
Jiaxin Sun,
Xinxin Cao,
Peixiao Mao,
Ling Zhang,
Gang Lei,
Guosheng Jiang and
Fulong Ning
Applied Energy, 2025, vol. 377, issue PA, No S0306261924017264
Abstract:
The co-extraction of hydrate and free gas through depressurization assisted by reservoir reformation in the South China Sea holds great promise for commercial development. Formation sealing, as one of reservoir reformation methods, demonstrates strong feasibility due to its benefits for enhancing depressurization and preventing water invasion. However, the application of this approach within a symbiotic system of hydrate and free gas has not been thoroughly evaluated. To reveal the mechanism behind increased yield and clarify the impact of various sealing factors, this study conducts numerical simulations based on a three-dimensional geological model constructed using survey data from site SHSC-4. The influences of sealed radius, sealed thickness, and permeability ratio before and after sealing on production are examined using orthogonal design. Additionally, the maximum percentage of gas contribution from hydrate dissociation (w) during co-extraction is calculated. The results show that: (1) Formation sealing can significantly enhances production potential; (2) Free gas serves as the primary gas source during the whole co-extraction, with the maximum w reaching approximately 20 %; (3) The optimal parameters of sealed layer by using a vertical well are as follows: a sealed radius of 150–200 m, a permeability ratio of 5000, and a sealed thickness of 0.50 m.
Keywords: Formation sealing; Co-extraction of hydrate and free gas; Contribution percentage of hydrate; Depressurization; Scheme optimization (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924017264
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017264
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124343
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().