Multi-timescale power system operations for electrolytic hydrogen generation in integrated nuclear-renewable energy systems
Jubeyer Rahman,
Roshni Anna Jacob and
Jie Zhang
Applied Energy, 2025, vol. 377, issue PA, No S030626192401729X
Abstract:
This study explores how sector coupling via Integrated energy systems (IES) can improve the operational flexibility of the power grid, while hydrogen is gaining traction as a versatile energy carrier. Specifically, we have evaluated the operational benefits of integrating two electrolytic processes for hydrogen generation, namely low-temperature electrolysis (LTE) and high-temperature steam electrolysis (HTSE), into a nuclear-renewable IES using a 3-cycle power system operation framework. Detailed steady-state models of the electrolytic hydrogen generating facilities are constructed, with the HTSE process represented using standard transient models to account for the steam-bypass scheme from the nuclear reactor. These models are then integrated into a renewable-intensive power network model (specifically, the NREL 118-bus system). To simulate the operation of the integrated system across multiple timescales, a multi-timescale scheduling and dispatch tool is employed. Results indicate that while both electrolytic processes contribute to significant flexibility enhancement and renewable energy curtailment reduction (3 MWh and 16 MWh), the LTE process offers more operational benefits than the HTSE process across multiple timescales.
Keywords: Integrated energy system; Low-temperature electrolysis; High-temperature steam electrolysis; Small modular reactor; Steam bypass (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192401729X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pa:s030626192401729x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124346
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().