EconPapers    
Economics at your fingertips  
 

Experimental investigation on the thermal performance of high-concentrated photovoltaic module utilizing the thermal sink of a novel Fan-shaped plate pulsating heat pipe

Wei-Wei Wang, Teng Liu, Jun-Zhe Guo, Bin Li, Hong-Liang Zhang, Yang Cai, Fu-Yun Zhao and Di Liu

Applied Energy, 2025, vol. 377, issue PA, No S0306261924017483

Abstract: High sunlight concentration on photovoltaic cells causes a substantial increase in the temperature of semiconductor, which leads to a decrease in conversion efficiency and irreversible faults of PV modules. Thereby, an ultra-thin Fan Shaped-Plate Pulsating Heat Pipe (FS-PPHP) was innovatively proposed by optimizing the traditional parallel channel structure in the thermal design for efficient cooling small scale HCPV cells. The effects of filling ratios, angles, working fluids and heat inputs on thermal transportation performance of FS-PPHP were comprehensively analyzed and discussed. The results indicated that the variable diameter design of the evaporation and condensation sections facilitates the working fluid return to the heating section and enlarges the imbalance pressure potential between adjacent channels, ensuring smoother startup of the FS-PPHP at various conditions. And the FS-PPHP exhibits excellent temperature oscillation characteristics at a filling ratio of 57 % and angle of 45° under variable input power, with a minimum thermal resistance of 0.5012 °C/W. Compared to deionized water, utilizing pure acetone as the working medium in the FS-PPHP reduces the average thermal resistance by 23 %, demonstrating superior heat transfer capability of FS-PPHP. Subsequently, the FS-PPHP was applied for cooling HCPV cells under simulated solar radiation, and its effect on the thermal and the output power characteristics of the HCPV cells was explored. The FS-PPHP could significantly reduce cell temperatures and enhance the generated electricity performance of HCPV modules, it was observed that in conjunction with from the FS-PPHP, the temperature of the HCPV cell ranged from 62.8 to 63.9 °C for solar irradiation of 4044.44 W/m2. Compared to natural cooling, this configuration resulted in a 56.1 % increase in output power and a 66.8 % average temperature reduction.

Keywords: HCPV cell; Pulsating heat pipe; Oscillation characteristics; Electrical output performance (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924017483
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017483

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124365

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017483