Fully distributed planning method for coordinated distribution and urban transportation networks considering three-phase unbalance mitigation
Haojie Shi,
Houbo Xiong,
Wei Gan,
Yumian Lin and
Chuangxin Guo
Applied Energy, 2025, vol. 377, issue PA, No S0306261924018324
Abstract:
Electric vehicles (EVs) are regarded as one of the silver bullets for addressing the global climate warming issue due to their zero‑carbon emission. However, the proliferation of EVs increases the demand on distribution network (DN), which already face challenges due to three-phase asymmetrical loads and impedance mismatches. The combination of charging demand and traditional three-phase loads aggravated the nodal voltage imbalance within DN. To tackle these issues, this paper presents a coordinated planning model for a three-phase unbalanced distribution network (TUDN) and urban transportation network (UTN). The model optimizes the placement of fast charging stations (FCS), line expansions, and road enhancements, using a distribution network reconfiguration (DNR) strategy to improve charging traffic flow (CTF) and reduce voltage imbalances. To ensure privacy encryption, a fully distributed framework using the alternating direction method of multipliers (ADMM) is designed to solve this problem, where a two-layer iterative process (TIP) is further developed to improve the convergence of ADMM, taking into account the integer variables in the model. Numerical simulations on a modified IEEE 34-bus system and a real-world system in China demonstrate the model’ s effectiveness, achieving a 43.84 % reduction in maximum voltage imbalance and outperforming other algorithms in iteration count and computation time.
Keywords: Electric vehicles; Three-phase unbalanced distribution network; Nodal voltage imbalance; Urban transportation network; Fully distributed framework (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924018324
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924018324
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124449
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().