Techno-econo-environmental feasibility analysis and investigation of engine performance, combustion, and emission characteristics using co-pyrolytic oil derived from tea waste and potato skin
Md. Sanowar Hossain,
Sanjay Paul,
Barun K. Das,
Pronob Das and
Sadman Soumik Nuhash
Applied Energy, 2025, vol. 377, issue PA, No S0306261924018348
Abstract:
This research aimed to evaluate the performance, emission characteristics, and combustion of CI engines using co-pyrolytic oil mixtures derived from tea waste (TW) and potato skin (PS). The study also assessed the techno-economic-environmental feasibility of the proposed project. Three types of co-pyrolytic oil, each analyzed with four blend ratios (10 %, 20 %, 30 %, and 40 %), were examined: oil produced under optimal conditions, oil obtained through normal distillation, and oil obtained via fractional distillation. Fractionally distilled co-pyrolytic oil blends demonstrated enhanced engine performance, nearing that of diesel fuel. Additionally, the co-pyrolytic oil showed compatibility with diesel and kerosene for water heating applications. An economic analysis highlighted the cost-effectiveness and reliability improvements for industrial use. A techno-economic assessment for a 10-ton/day co-pyrolytic facility indicated processing costs and revenues of $225.25/ton and $563.4/ton, respectively. The levelized energy cost was found to be $0.037/kWh, with a repayment period of 2.43 years over an eight-year project lifespan. The annual reduction in greenhouse gas emissions was calculated at 2104.29 kg. This study provides scientific guidelines for co-pyrolysis-based energy generation projects, offering valuable insights for investors and researchers.
Keywords: Co-pyrolysis; Engine performance; Emission characteristics; Techno-eonomic analysis; Environmental feasibility (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924018348
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924018348
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124451
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().