EconPapers    
Economics at your fingertips  
 

Future energy landscapes: Analyzing the cost-effectiveness of nuclear-renewable integrated energy Systems in Retrofitting of coal power plants

Muhammad R. Abdussami and Aditi Verma

Applied Energy, 2025, vol. 377, issue PA, No S0306261924018439

Abstract: Coal Power Plants (CPPs), despite their substantial contribution to global energy needs, pose significant environmental concerns due to Greenhouse Gas (GHG) emissions. Thus, the world has started thinking of alternative generation sources to replace CPPs. To replace CPPs, some energy generation resources must come into the scenario that can outshine the advantages of CPPs, such as easy availability of fuel, operational safety, and cost effectiveness. Concerning this matter, nuclear-renewable integrated systems can play a vital role as a potential replacement for CPPs. In this study, we systematically explore the transitional approach from CPPs to advanced energy systems and conduct an exhaustive comparative analysis focusing on three proposed energy system models: Greenfield, Coal-to-Nuclear (C2N), and Coal-to-Integrated Energy Systems (C2IES). Before conducting the comparative analysis, we determine the most feasible coal sites from Alaska, our surrogate location for this study, using a GIS-based nuclear reactor siting tool named “Siting Tool for Advanced Nuclear Development (STAND).” To carry out the comparative analysis among the proposed energy models for the selected coal site, we find out the optimal configuration of each system using a robust and recent nature-based metaheuristic optimization algorithm, Mountain Gazelle Optimization (MGO), complemented by another nature-based metaheuristic optimization algorithm, Particle Swarm Optimization (PSO), for validation. The key data used in this study include solar irradiance, temperature, wind speed, load profiles, and comprehensive cost data for each system component. Since the proposed energy models are highly complex and consider several assumptions, the key research findings are strengthened by performing a comprehensive sensitivity analysis. The base case results show that C2IES can reduce the Cost of Energy (COE) by roughly 65 % compared to Greenfield and C2N and ensure the utmost reliability of the energy system. Although this cost-saving margin contrasts in the sensitivity analysis across a range of scenarios, C2IES consistently offers the most cost-effective solution, highlighting its potential for sustainable energy transition.

Keywords: Coal power plants; Integrated energy systems; Nuclear power; Renewable energy; Optimization (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924018439
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924018439

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124460

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924018439