Asymptotic analytical solution for the temperature evolution in internally-heated packed-bed tanks for high-temperature solid-air energy storage
A. Martín-Alcántara and
R. Fernandez-Feria
Applied Energy, 2025, vol. 377, issue PA, No S0306261924020269
Abstract:
Unidirectional flow equations through a porous medium with a localized heat source are used to model the fluid and solid temperatures in a packed-bed, internally-heated thermal energy storage (IH-TES) unit. Numerical results in absence of the heat source term are used to validate the model equations against experimental data from TES units available in the literature. An analytical approximate solution of the equations is obtained via perturbation methods. This solution is used to derive useful relations for the design and operation of IH-TES systems. The presence of the internal heat source substantially modifies the operational scales and the qualitative behavior of the system in relation to previous results on TES units. Practical recommendations to improve the design and operation of the IH-TES system resulting from the analytical solution are provided. For instance, it is found that the heat source must be located at about three-quarters of the packed-bed length for optimal performance, with a very small thickness, proportional to the solid thermal conductivity and inversely proportional to the fluid velocity and the volumetric heat capacity of the gas. Also that a high porosity is recommendable to decrease the heating time.
Keywords: Thermal energy storage (TES); Asymptotic analysis; Numerical simulation; Carnot battery; High-temperature heat (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924020269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924020269
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124643
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().