EconPapers    
Economics at your fingertips  
 

Analyzing the impact of design factors on solar module thermomechanical durability using interpretable machine learning techniques

Xin Chen, Todd Karin and Anubhav Jain

Applied Energy, 2025, vol. 377, issue PB, No S0306261924018452

Abstract: Solar modules in utility-scale systems are expected to maintain decades of lifetime to rival conventional energy sources. However, cyclic thermomechanical loading often degrades their long-term performance, highlighting the importance of effective design to mitigate thermal expansion mismatches between module materials. Given the complex composition of solar modules, isolating the impact of individual components on overall durability remains a challenging task. In this work, we analyze a comprehensive data set that comprises bill-of-materials (BOM) and thermal cycling power loss from 251 distinct module designs to identify the predominant design factors and their impacts on the thermomechanical durability of modules. The methodology of our analysis combines machine learning modeling (random forest) and Shapley additive explanation (SHAP) to correlate design factors with power loss and interpret the model’s decision-making. The interpretation reveals that silicon type (monocrystalline or polycrystalline), encapsulant thickness, busbar numbers, and wafer thickness predominantly influence the degradation. With lower power loss of around 0.6% on average in the SHAP analysis, monocrystalline cells present better durability than polycrystalline cells. This finding is further substantiated by statistical testing on our raw data set. The SHAP analysis also demonstrates that while thicker encapsulants lead to reduced power loss, further increasing their thickness over around 0.6 to 0.7 mm does not yield additional benefits, particularly for the front side one. In addition, other important BOM features such as the number of busbars are analyzed. This study provides a blueprint for utilizing explainable machine learning techniques in a complex material system and can potentially guide future research on optimizing the design of solar modules.

Keywords: PV module; Thermomechanical durability; Bill of materials; Interpretable machine learning (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924018452
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018452

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124462

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018452