Unsupervised learning for efficiently distributing EVs charging loads and traffic flows in coupled power and transportation systems
Tao Qian,
Zeyu Liang,
Chengcheng Shao,
Zishan Guo,
Qinran Hu and
Zaijun Wu
Applied Energy, 2025, vol. 377, issue PB, No S0306261924018592
Abstract:
With the escalating adoption of electric vehicles (EVs), the intricate interplay between power and traffic systems becomes increasingly pronounced. Understanding the distribution of charging loads and traffic flows are paramount for effective coordination. Traditionally, the distribution of EVs charging loads and traffic flows are obtained via solving the EVs traffic assignment problem with User Equilibrium (TAP-UE). Despite the general convexity of TAP-UE, the iterative nature of the prevailing solution process and the nonlinear objective function pose challenges, leading to prolonged solution times. This paper introduces a novel unsupervised learning-based framework aimed at efficiently distributing EVs charging loads and traffic flows without off-the-shelf solvers or a large dataset. Firstly, feasible paths are identified for each OD pair, eliminating the need for iterative procedures. Subsequently, the convexity-preserving reformulation of TAP-UE converts it into an unconstrained nonlinear optimization problem, leading to a properly designed loss function to guide neural networks in directly learning a legitimate OD demands-EVs loads-traffic flows mapping which satisfies the UE conditions. The incorporation of the Hessian matrix into the gradient update of network parameters, facilitated by the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm, enhances the convergence speed of the unsupervised learning process. Case studies are conducted to demonstrate the efficacy of the proposed framework.
Keywords: EVs charging loads; Traffic assignment problem; User equilibrium; Unsupervised learning; L-BFGS algorithm (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924018592
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018592
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124476
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().