Optimal planning and management of the energy–water–carbon nexus in hybrid AC/DC microgrids for sustainable development of remote communities
Alejandro Valencia-Díaz,
Eliana M. Toro and
Ricardo A. Hincapié
Applied Energy, 2025, vol. 377, issue PB, No S0306261924019007
Abstract:
This paper presents a two-stage stochastic mixed-integer nonlinear programming model, which is linearized to a mixed-integer linear programming (MILP) form, for optimizing the energy–water–carbon (EWC) nexus in remote AC/DC microgrids aimed at sustainable community development. The model optimizes the selection, location, and operation of diesel generators, voltage source converters, photovoltaic systems, wind turbines, and battery energy storage systems while managing CO2 emissions. It accurately models the AC/DC microgrid’s operation, determining optimal voltages, currents, and converter states (inverter or rectifier). Uncertainties in power demand, water consumption, solar irradiation, and wind speed are modeled using stochastic scenarios generated via k-means clustering. The MILP model is implemented in GAMS and solved with the commercial solver CPLEX, ensuring global optimization. Results show that integrating distributed energy resources, compared to a case without these elements, reduces CO2 emissions of the diesel generators and the operational costs of the EWC nexus, highlighting the proposed approach’s environmental and economic benefits. These findings underline the importance of incorporating distributed energy resources in the sustainable development of microgrids.
Keywords: AC/DC microgrid; Energy–water–carbon nexus; Sustainable development goals; Distributed energy resources; Mixed-integer linear programming; Two-stage stochastic programming (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924019007
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019007
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124517
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().