EconPapers    
Economics at your fingertips  
 

A novel hybrid model based on evolving multi-quantile long and short-term memory neural network for ultra-short-term probabilistic forecasting of photovoltaic power

Jianhua Zhu and Yaoyao He

Applied Energy, 2025, vol. 377, issue PC, No S0306261924019846

Abstract: Probabilistic forecasting is extremely crucial in eliminating uncertainty in photovoltaic (PV) power generation. Quantile regression long and short-term memory neural network (QRLSTM) is widely recognized as promising methods for PV power probabilistic forecasting due to their strong generalization ability. However, these models train the model for each quantile individually, which lacks consideration of the correlation and monotonicity between quantiles, and multiple training leads to excessive computational complexity. Furthermore, the non-differentiable pinball loss function generated by QR places significant demands on the optimization algorithms. To address these issues, this paper proposes an evolutive distributed chaotic particle swarm optimization (EDCPSO)-optimized multi-quantile LSTM (MQLSTM) to achieve high-quality probabilistic PV power prediction. MQLSTM is a multi-output network structure that simultaneously outputs all quantile estimates and adopts a loss function with all quantile scores and non-crossing constraints to guide the training of the model. This approach not only improves the quality and reasonableness of quantile estimations, but also reduces computational difficulty. Then, from the perspective of evolutionary computation, considering the weight parameters of each connection layer in MQLSTM as decision variables, we convert the probabilistic forecasting into an optimization problem and propose a EDCPSO to solve the training difficulty. It implements a targeted distributed chaos strategy based on the evolutionary state to improve convergence speed and search capability. The proposed model is tested to be superior in real cases.

Keywords: Quantile regression; Evolutive distributed chaotic particle swarm optimization (EDCPSO); Photovoltaic (PV) power forecasting; Probabilistic forecasting (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924019846
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019846

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124601

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019846