A hybrid load prediction method of office buildings based on physical simulation database and LightGBM algorithm
Huihui Lian,
Ying Ji,
Menghan Niu,
Jiefan Gu,
Jingchao Xie and
Jiaping Liu
Applied Energy, 2025, vol. 377, issue PC, No S0306261924020038
Abstract:
Building load prediction plays an important role in building energy savings and mechanical and electrical system optimization control. The dynamic energy consumption can be accurately calculated using the traditional physical energy simulation method that entails a complex setup and verification process due to the numerous input parameters required. It is also difficult to change the physical model once it has been determined. The data-mining method is fast in calculation and simple to use, but its prediction accuracy is limited by historical data quality. It is difficult to predict the load of new buildings without historical data. To solve these problems, this study proposes a hybrid building load prediction method for office buildings. The proposed method uses EnergyPlus to generate a building load database that includes than 25.14 million data cases, covering 35 types of building geometry and 2870 building examples. Based on the above database, the LightGBM algorithm was selected to extract feature variables that affect the load and build a load prediction model. The training results show that there are 24 key feature variables for office building load prediction. The hourly MAPE of the cooling load prediction model is 6.95 % and RMSE is 4.31 W/m2, and the hourly MAPE of the heating load prediction model is 7.09 % and RMSE is 11.64 W/m2 compared with EnergyPlus model. Two actual office buildings are selected as case studies to validate the model prediction accuracy. Results show that comparing predicted results with measured data, the hourly cooling load of the MAPE is 12.42 %. Coparing predicted results with actual heating load, daily MAPE is 7.97 %.
Keywords: Office building; Load prediction; Simulation database; LightGBM; Feature engineering (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924020038
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020038
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124620
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().