Understanding calendar aging degradation in cylindrical lithium-ion cell: A novel pseudo-4-dimensional electrochemical-thermal model
Piera Di Prima,
Davide Dessantis,
Daniele Versaci,
Julia Amici,
Silvia Bodoardo and
Massimo Santarelli
Applied Energy, 2025, vol. 377, issue PC, No S0306261924020233
Abstract:
This study presents a comprehensive investigation of calendar aging degradation in commercial 21,700 cylindrical lithium-ion cells with a LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode and a silicon- graphite composite anode. The cells underwent accelerated aging at 60 °C for 63 days at various states of charge to assess the impact of high-temperature calendar aging. Experimental analysis was performed using non-destructive electrochemical techniques, and a novel pseudo-4D electrochemical-thermal model was developed using COMSOL Multiphysics to provide insights into the degradation processes. This model extends the traditional 1D geometry of a pseudo-2D model into a 3D framework to simulate the local heterogeneity of the real electrochemical and thermal processes in commercial cells with jellyroll configurations, providing detailed insights into the behavior of the cell. The model incorporates various degradation mechanisms while considering the interaction between the cathode aging products and the solid electrolyte interphase growth at the anode. Experimental validation was performed using charge/discharge tests and calendar aging results, emphasizing the complex interplay between degradation mechanisms.
Keywords: Calendar aging; P4D model; Degradation mechanisms; NMC811; Silicon-graphite; Cylindrical cell (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924020233
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020233
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124640
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().