EconPapers    
Economics at your fingertips  
 

Thermodynamic investigation of a Joule-Brayton cycle Carnot battery multi-energy system integrated with external thermal (heat and cold) sources

Jiaxing Huang, Yao Zhao, Jian Song, Kai Wang, Peiwang Zhu, Bingchi Liu and Peifeng Sun

Applied Energy, 2025, vol. 377, issue PC, No S030626192402035X

Abstract: The electro-thermal conversion working mode implies that Carnot batteries have the potential to transform into multi-energy management systems by scheduling and converting different energy vectors according to energy demands. In this paper, a thermodynamic model of Joule-Brayton cycle Carnot battery multi-energy systems is established, based on which two methods of conversion and utilisation of external multi-grade heat and cold are proposed to respond to changes in energy demand. The effects of key parameters such as heat and cold source temperatures, the amount of absorbed heat and cold energy, working fluid mass flow rate and discharge duration on the performance of electricity efficiency, exergy efficiency and coefficient of performance are discussed. The results show that the electricity efficiency of the Carnot battery multi-energy system can be increased to 68.8%–78.0% when the system integrates heat sources only, and to 113.9%–115.2% when the system integrates both heat and cold sources. Additionally, the methods of increasing the working fluid mass flow rate and extending discharge duration allow such systems to integrate with multiple heat and cold sources in combined cooling, heating and power mode. Furthermore, the technical feasibility of such systems is also evaluated for a large energy hub in China, with the coefficient of performance, exergy efficiency and reduced CO2 emissions rate reaching 119.3%, 85.1% and 94.3 t/h, respectively. The Carnot battery multi-energy system possesses sufficient flexibility in the domain of multi-energy utilisation, demonstrating its potential to evolve into smart energy hubs for cities or districts.

Keywords: Carnot battery; Multi-energy system; Thermally integration; Cascaded latent heat and cold store; Combined cooling, heating and power (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192402035X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pc:s030626192402035x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124652

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s030626192402035x