Applying fine-tuned LLMs for reducing data needs in load profile analysis
Yi Hu,
Hyeonjin Kim,
Kai Ye and
Ning Lu
Applied Energy, 2025, vol. 377, issue PC, No S030626192402049X
Abstract:
This paper presents a novel method for utilizing fine-tuned Large Language Models (LLMs) to minimize data requirements in load profile analysis, demonstrated through the restoration of missing data in power system load profiles. A two-stage fine-tuning strategy is proposed to adapt a pre-trained LLMs, i.e., GPT-3.5, for missing data restoration tasks. Through empirical evaluation, we demonstrate the effectiveness of the fine-tuned model in accurately restoring missing data, achieving comparable performance to state-of-the-art specifically designed models such as BERT-PIN. Key findings include the importance of prompt engineering and the optimal utilization of fine-tuning samples, highlighting the efficiency of few-shot learning in transferring knowledge from general user cases to specific target users. Furthermore, the proposed approach demonstrates notable cost-effectiveness and time efficiency compared to training models from scratch, making it a practical solution for scenarios with limited data availability and computing resources. Additionally, we applied fine-tuned LLM to load forecasting and showed its significant potential for application to other power system load profile analysis tasks. Consequently, it advances the use of LLMs in power system analytics, offering promising implications for enhancing the resilience and efficiency of power distribution systems.
Keywords: Fine-Tuning; Large Language Models; Load Profile Analysis; Missing Data Restoration; Prompt Engineering (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192402049X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pc:s030626192402049x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124666
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().