A two-layer strategy for sustainable energy management of microgrid clusters with embedded energy storage system and demand-side flexibility provision
Farid Moazzen and
M.J. Hossain
Applied Energy, 2025, vol. 377, issue PD, No S0306261924020427
Abstract:
The intermittent nature of renewable energy generation and the fluctuating demands pose persistent challenges in microgrid operations. In response, stakeholders and operators have turned to clustering the geographically adjacent microgrids as a solution. In this context, this paper introduces a novel two-layer energy management strategy for microgrid clusters, utilizing demand-side flexibility and the capabilities of shared battery energy storage (SBES) to minimize operational costs and emissions, while ensuring a spinning reserve within individual microgrids to prevent load-shedding. In the lower layer, the proposed approach devises optimal day-ahead operation policies, while the upper layer employs a cooperative strategy to further optimize the operational efficiency across the entire cluster. The energy management problem is accurately formulated as a mixed integer quadratic programming (MIQP) optimization, which incorporates linear terms in the problem's constraints. The formulation accounts for operational costs associated with SBES including expenses of charging/discharging and changes in operating states (CiOS). Real-world case studies with a cluster of three microgrids in Australia validate the effectiveness of this approach. Results show a reduction in operational costs for the base case scenario by 6.96 % compared to conventional microgrid management strategies. Sensitivity analyses further demonstrate the economic benefits of varying SBES capacity and flexibility pricing, with savings ranging from 6.5 % to 8.1 %. The proposed strategy also reduces CO2 emissions by up to 11.6 %, while improving system reliability. This strategy holds promise for integration into distributed energy systems with high renewable penetration and clustered local grids, offering significant advantages for utility operators and end-users through improved energy efficiency and reduced emissions.
Keywords: Energy management; Optimization; Storage system; MIQP; Microgrid cluster (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924020427
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020427
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124659
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().