EconPapers    
Economics at your fingertips  
 

Experimental performance investigation on a desiccant-assisted two-stage evaporative cooling system in hot and humid areas

Yanling Zhang, Yi Chen, Hongxing Yang, Hao Zhang and Chun Wah Leung

Applied Energy, 2025, vol. 377, issue PD, No S0306261924020877

Abstract: The escalating demand for energy-efficient and eco-friendly air conditioning systems in buildings has spurred the development of comfortable, efficient, and cost-effective air handling system configurations. Desiccant cooling has shown a higher coefficient of performance (COP) compared to traditional vapor compression refrigeration (MVCR) systems. However, current desiccant cooling facilities struggle to decouple and efficiently handle indoor heat and moisture loads. The complexity of these facilities has kept intricate cooling systems remaining theoretical, requiring simplification and experimental investigation. This paper presents an experimental study on a compact, two-stage evaporative cooling system assisted by a liquid desiccant. A key innovation of this system is the inclusion of a two-stage heat exchanger that adeptly manages the decoupling of indoor heat and moisture loads under challenging high-temperature and high-humidity conditions. Performance analysis was conducted experimentally under three hot and humid climatic conditions using an optimized operating parameter scheme. Starting from an initial condition of 36.22 °C and a humidity ratio of 0.028 kg/kg, the proposed system achieves COP values ranging from 11.3 to 18.4 without compromising indoor comfort or facility compactness. Under high heat and high humidity conditions, the optimized system extracts 20 % of the product air as the secondary air source. It can reach a minimum supply air temperature of 18.44 °C, achieved under optimized conditions of low wind speed (1.0 m/s), high desiccant concentration (35 %), and substantial desiccant flow (0.09 kg/s). Experimental studies of this new system provide the possibility of achieving high efficiency in air handling over a wide range of temperatures and humidity.

Keywords: Desiccant-enhanced evaporative cooling; Two-stage indirect evaporative cooling; Air conditioning; Performance optimization; Eco-friendly air handling (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924020877
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020877

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124704

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020877