DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting
Yanru Yang,
Yu Liu,
Yihang Zhang,
Shaolong Shu and
Junsheng Zheng
Applied Energy, 2025, vol. 378, issue PA, No S0306261924021275
Abstract:
Accurate forecasting of photovoltaic (PV) power is crucial for real-time grid balancing and storage system optimization. However, due to the intermittent and fluctuating nature of PV power generation, achieving accurate PV power forecasting remains a challenge. In this paper, we propose a novel approach for multi-site intra-hour PV power forecasting. Different from current work which predicts the power of each PV station independently, we predict the power of each PV station simultaneously by considering the inherent spatio-temporal correlation with other PV stations and develop a novel graph network named DEST-GNN. In DEST-GNN, an undirected graph is used to represent the dependence of these PV stations. Each PV station is represented by a node and the spatio-temporal correlation of any two PV stations is represented by an edge between them. To improve the accuracy of prediction, sparse spatio-temporal attention is adopted to filter out the weak associations of these PV stations. We then develop an adaptive graph convolution network (GCN) that adopts an adaptive adjacency matrix and a temporal convolution network to capture the hidden spatio-temporal dependency of these PV stations. Experimental studies using datasets from Alabama and California, provided by the National Renewable Energy Laboratory (NREL), demonstrate the effectiveness of DEST-GNN. For the Alabama dataset, DEST-GNN achieves a mean absolute error (MAE) of 0.49 over a 12-mon training scale. Furthermore, DEST-GNN attains an MAE of 0.42 on the California dataset, continuing to exhibit its strong forecasting capabilities.
Keywords: Photovoltaic power forecasting; Spatio-temporal correlation; Adaptive graph convolution; Sparse attention (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924021275
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021275
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124744
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().