Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Sujan Ghimire,
Mohanad S. AL-Musaylh,
Thong Nguyen-Huy,
Ravinesh C. Deo,
Rajendra Acharya,
David Casillas-Pérez,
Zaher Mundher Yaseen and
Sancho Salcedo-Sanz
Applied Energy, 2025, vol. 378, issue PA, No S0306261924021469
Abstract:
Electricity consumption has stochastic variabilities driven by the energy market volatility. The capability to predict electricity demand that captures stochastic variances and uncertainties is significantly important in the planning, operation and regulation of national electricity markets. This study has proposed an explainable deeply-fused nets electricity demand prediction model that factors in the climate-based predictors for enhanced accuracy and energy market insight analysis, generating point-based and confidence interval predictions of daily electricity demand. The proposed hybrid approach is built using Deeply Fused Nets (FNET) that comprises of Convolutional Neural Network (CNN) and Bidirectional Long-Short Term Memory (BILSTM) Network with residual connection. The study then contributes to a new deep fusion model that integrates intermediate representations of the base networks (fused output being the input of the remaining part of each base network) to perform these combinations deeply over several intermediate representations to enhance the demand predictions. The results are evaluated with statistical metrics and graphical representations of predicted and observed electricity demand, benchmarked with standalone models i.e., BILSTM, LSTMCNN, deep neural network, multi-layer perceptron, multivariate adaptive regression spline, kernel ridge regression and Gaussian process of regression. The end part of the proposed FNET model applies residual bootstrapping where final residuals are computed from predicted and observed demand to generate the 95% prediction intervals, analysed using probabilistic metrics to quantify the uncertainty associated with FNETS objective model. To enhance the FNET model’s transparency, the SHapley Additive explanation (SHAP) method has been applied to elucidate the relationships between electricity demand and climate-based predictor variables. The suggested model analysis reveals that the preceding hour’s electricity demand and evapotranspiration were the most influential factors that positively impacting current electricity demand. These findings underscore the FNET model’s capacity to yield accurate and insightful predictions, advocating its utility in predicting electricity demand and analysis of energy markets for decision-making.
Keywords: Machine learning models; Cities sustainability and development; Deeply fused nets model; Electricity consumption (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924021469
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021469
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124763
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().