EconPapers    
Economics at your fingertips  
 

Theoretical and experimental study on power performance and wake characteristics of a floating wind turbine under pitch motion

Guiyue Duan, Daniele Gattari and Fernando Porté-Agel

Applied Energy, 2025, vol. 378, issue PA, No S0306261924021500

Abstract: Understanding the effects of platform motion on the performance of floating wind turbines is essential to optimize the exploitation of deep-ocean wind resources. In this work, theoretical analyses and wind tunnel experiments are conducted to study the effects of cyclic pitch motion on the power performance and wake characteristics of floating wind turbines. Theoretical analyses reveal that the rotor-available power, power variation and wake state of a floating wind turbine all depend on the Strouhal number (i.e., the normalized pitch frequency), the pitch amplitude and the pitch-radius-to-rotor-diameter ratio of the turbine (here pitch radius refers to the distance from the rotor center to the pitch rotation center). Critical Strouhal numbers are further proposed to distinguish the power performance and wake state. Power measurements show that cyclic pitch motion results in a periodic power variation. The mean power production increases with increasing pitch frequency but decreases with increasing amplitude. Both the upper and lower bounds of power variation are found to be dependent on the pitch dynamics. Wake measurements show that, for the range of pitch dynamics tested in this study, cyclic pitch motion can accelerate wake recovery and growth, depending on pitch amplitude but not on pitch frequency. Phase-averaged results suggest that the wake behavior is periodic and consequently, predictable. The cyclic pitch motion of the upstream turbine enhances its vertical wake meandering, leading to higher power production but stronger power fluctuations at downstream turbines. The propagation of periodic wake dynamics also leads to the periodicity in power outputs of downstream wind turbines.

Keywords: Cyclic pitch motion; Offshore floating wind turbine; Power; Strouhal number; Wake; Wind tunnel experiment (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924021500
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021500

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124767

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021500