EconPapers    
Economics at your fingertips  
 

Comparison of the thermoelectric performance of different photovoltaic/thermal hybrid thermoelectric generation modules: An experimental study

Tao Li, Junyong Yu, Xinyu Peng, Wenjie Zhou, Chenliang Xu, Guannan Li and Qianjun Mao

Applied Energy, 2025, vol. 378, issue PA, No S0306261924021548

Abstract: To enhance the thermoelectric performance of photovoltaic/thermal hybrid thermoelectric generations modules (PV/T-TEG), a novel photovoltaic/dual thermal phase change material thermoelectric component (PV/2 T-PCM-TEG) was designed, which is composed of PV-PCM-TEG and TEG hot and cold side of the two layers of serpentine copper tubes. In this study, we designed and constructed an experimental bench for five components, PV, PV/T, PV/T-PCM, PV/T-PCM-TEG, and PV/2 T-PCM-TEG, and completed comparative performance analyses. The results showed that PV/2 T-PCM-TEG not only improved the power generation performance of photovoltaic cells more effectively, but also obtained more thermal exergy, with total average and optimal exergy efficiencies of 14.86 % and 18.50 %, respectively. The average PV cell temperature of the PV/2 T-PCM-TEG can be reduced by a maximum of 10.8 °C, 8.6 °C, 3.6 °C, and 2.1 °C compared to the first four modules. The PV/2 T-PCM-TEG had the best power generation performance with 12.97 % efficiency, and its average total exergy efficiency is 55.11 %, 42.61 %, 11.39 %, and 5.92 % higher than that of the previous four types of modules, respectively. It can be seen that the PV/2 T-PCM-TEG module can effectively improve the thermoelectric properties and provide a reference basis for the design of PV/T-TEG structure.

Keywords: PV/T; Thermoelectric generator; Energy efficiency; Exergy efficiency; Experimental study (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924021548
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021548

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124771

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021548