Resilient energy management of a multi-energy building under low-temperature district heating: A deep reinforcement learning approach
Jiawei Wang,
Yi Wang,
Dawei Qiu,
Hanguang Su,
Goran Strbac and
Zhiwei Gao
Applied Energy, 2025, vol. 378, issue PA, No S0306261924021639
Abstract:
The corrective control of a building-level multi-energy system (MES) for emergency load shedding is essential to optimize the operating cost after contingency. For a Danish case, the heating devices in the building are connected to a developing low-temperature district heating (LTDH) system and operated under a heat market. Due to the coupling between the electrical power and heating system, an electricity outage can be propagated to the heating network, and heat prices as well as tariffs can impact the MES operating cost. In the previous studies, only electrical load shedding is modeled, while the impact of electricity outages on heating system operation and heat load control is ignored. On the other hand, the problem is traditionally solved by model-based optimization methods which are highly nonconvex leading to high computing complexity. Moreover, operating uncertainties can lead to infeasible solutions. To address these challenges, this paper proposes a deep reinforcement learning-based corrective control method for the resilient energy management of a building-level MES. In the method, the proximal policy optimization algorithm is applied, where multiple uncertainties, system dynamics, and operating constraints are considered. A case study of a real-life residential building connected to the LTDH system in Denmark is carried out, where electricity outages are simulated. The results verify the performance of the proposed method in achieving resilient energy management of the MES.
Keywords: Deep reinforcement learning; Low-temperature district heating system; Multi-energy system; Resilience (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924021639
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021639
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124780
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().