A novel short-term multi-energy load forecasting method for integrated energy system based on two-layer joint modal decomposition and dynamic optimal ensemble learning
Zhengyang Lin,
Tao Lin,
Jun Li and
Chen Li
Applied Energy, 2025, vol. 378, issue PA, No S0306261924021810
Abstract:
Accurate short-term multi-energy load forecasting is the cornerstone for optimal dispatch and stable operation of integrated energy system (IES). However, due to the complexity and coupling inside IES, multi-energy load forecasting faces serious challenges with data nonlinearity and instability, leading to reduced prediction accuracy. To this end, a novel short-term multi-energy load forecasting method for IES based on two-layer joint modal decomposition (TLJMD) and dynamic optimal ensemble (DOE) learning is developed in this paper. Firstly, the TLJMD method is proposed to decompose the nonlinear and nonstationary multi-energy load into several intrinsic mode functions (IMFs) to capture the periodicity and regularity within the multi-energy load. Secondly, the uniform information coefficient method is employed to select calendar, meteorological, and coupling feature that exhibit strong correlation with the multi-energy load. Eventually, the DOE model consisting of four base learners and the ensemble weight forecasting model is constructed, the IMFs and selected features are input into the DOE model to achieve the final forecasting results. The proposed method is tested on the publicly available data set from real-world scenario and compared with various forecasting methods to assess its effectiveness and accuracy. The simulation results indicate that the proposed method outperforms other forecasting methods in short-term multi-energy load forecasting for IES, with mean absolute percentage error values of 1.7025 %, 2.2244 %, and 2.3808 % for electric, heating, and cooling load forecasting, respectively.
Keywords: Integrated energy system; Load forecasting; Ensemble learning; Modal decomposition; Deep learning (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924021810
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021810
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124798
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().