Hierarchical dynamic wake modeling of wind turbine based on physics-informed generative deep learning
Qiulei Wang,
Zilong Ti,
Shanghui Yang,
Kun Yang,
Jiaji Wang and
Xiaowei Deng
Applied Energy, 2025, vol. 378, issue PA, No S0306261924021950
Abstract:
With the increasing demand for electric power, the size of wind farms is becoming much larger than ever before. Power and load prediction are two of the most essential topics in wind farm layout optimization. Traditional wake modeling methods, such as analytic models and CFD simulations, struggle to handle such large-scale problems accurately and efficiently. In this study, a novel hierarchical dynamic wake modeling approach for wind turbines using generative deep learning, PHOENIX (PHysics-infOrmed gEnerative deep learniNg for hIerarchical dynamic wake modeling eXploration), is proposed to capture the spatial–temporal features of the unsteady wake field in wind turbine clusters. The dynamic wake meandering (DWM) model is employed to generate the corresponding datasets for training, testing, and validating the deep learning-based wake prediction framework. This research is expected to accelerate the prediction process and improve accuracy, and it can be further applied to wind turbine design and wind farm layout optimization.
Keywords: Dynamic wake meandering (DWM); Hierarchical temporal aggregation; Conditional generative adversarial network (cGAN); Generative deep learning; Wind farm wake modeling (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924021950
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021950
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124812
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().