EconPapers    
Economics at your fingertips  
 

Online real-time robust framework for non-intrusive load monitoring in constrained edge devices

L.E. Garcia-Marrero, E. Monmasson and G. Petrone

Applied Energy, 2025, vol. 378, issue PA, No S0306261924021974

Abstract: Real-time information on detailed power consumption can motivate users to make informed decisions to reduce their energy bills. In that sense, Non-Intrusive Load Monitoring (NILM) emerges as a cost-effective technique to achieve the previously mentioned benefits. This paper presents an online real-time robust NILM framework that only requires the aggregated active power, operates by updating the appliance’s state probabilities sequentially, and uses this information to predict the power consumption of each monitored appliance. The framework primarily focuses on the seamless integration and practical deployment of a real-time NILM algorithm, operating at frequencies around 1 Hz, on constrained edge devices. Starting with detecting edges and the base load in real-time, the appliance’s state probabilities are updated considering the possible presence of unknown loads. The power consumption of each appliance is then estimated by employing a modified Population-Based Incremental Learning algorithm (PBIL). Experiments on two publicly available datasets against state-of-the-art methods demonstrated its accuracy and robustness in the presence of unknown appliances. The real-time capabilities of the framework were verified through integration in a Home Automation framework running in a constrained edge device.

Keywords: Non-intrusive load Monitoring (NILM); Online energy disaggregation; Real-time energy disaggregation; Population-Based Incremental Learning (PBIL); Constrained edge devices (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924021974
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021974

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124814

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021974