EconPapers    
Economics at your fingertips  
 

Path signature-based life prognostics of Li-ion battery using pulse test data

Rasheed Ibraheem, Philipp Dechent and Gonçalo dos Reis

Applied Energy, 2025, vol. 378, issue PA, No S0306261924022037

Abstract: Common models predicting the End of Life (EOL) and Remaining Useful Life (RUL) of Li-ion cells make use of long cycling data samples. This is a bottleneck when predictions are needed for decision-making but no historical data is available. A machine learning model to predict the EOL and RUL of Li-ion cells using only data contained in a single Hybrid Pulse Power Characterization (HPPC) test is proposed. The model ignores the cell’s prior cycling usage and is validated across nine different datasets each with its cathode chemistry. A model able to classify cells on whether they have passed EOL given an HPPC test is also developed. The underpinning data-centric modelling concept for feature generation is the notion of ‘path signature’ which is combined with an explainable tree-based machine learning model and an in-depth study of the models is provided. Model validation across different SOC ranges shows that data collected from the HPPC test across a 20% SOC window suffices for effective prediction. The EOL and RUL models achieve 85 and 91 cycles MAE respectively while the classification model has an accuracy of 94% on the test data. Code for data processing and modelling is publicly available.

Keywords: Capacity degradation; Hybrid Pulse Power Characterization testing; Path signature methodology; Lithium-ion cells; Explainable machine learning; Remaining useful life; End of life (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924022037
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022037

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124820

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022037