Path signature-based life prognostics of Li-ion battery using pulse test data
Rasheed Ibraheem,
Philipp Dechent and
Gonçalo dos Reis
Applied Energy, 2025, vol. 378, issue PA, No S0306261924022037
Abstract:
Common models predicting the End of Life (EOL) and Remaining Useful Life (RUL) of Li-ion cells make use of long cycling data samples. This is a bottleneck when predictions are needed for decision-making but no historical data is available. A machine learning model to predict the EOL and RUL of Li-ion cells using only data contained in a single Hybrid Pulse Power Characterization (HPPC) test is proposed. The model ignores the cell’s prior cycling usage and is validated across nine different datasets each with its cathode chemistry. A model able to classify cells on whether they have passed EOL given an HPPC test is also developed. The underpinning data-centric modelling concept for feature generation is the notion of ‘path signature’ which is combined with an explainable tree-based machine learning model and an in-depth study of the models is provided. Model validation across different SOC ranges shows that data collected from the HPPC test across a 20% SOC window suffices for effective prediction. The EOL and RUL models achieve 85 and 91 cycles MAE respectively while the classification model has an accuracy of 94% on the test data. Code for data processing and modelling is publicly available.
Keywords: Capacity degradation; Hybrid Pulse Power Characterization testing; Path signature methodology; Lithium-ion cells; Explainable machine learning; Remaining useful life; End of life (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924022037
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022037
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124820
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().