Imitation reinforcement learning energy management for electric vehicles with hybrid energy storage system
Weirong Liu,
Pengfei Yao,
Yue Wu,
Lijun Duan,
Heng Li and
Jun Peng
Applied Energy, 2025, vol. 378, issue PA, No S0306261924022153
Abstract:
Deep reinforcement learning has become a promising method for the energy management of electric vehicles. However, deep reinforcement learning relies on a large amount of trial-and-error training to acquire near-optimal performance. An adversarial imitation reinforcement learning energy management strategy is proposed for electric vehicles with hybrid energy storage system to minimize the cost of battery capacity loss. Firstly, the reinforcement learning exploration is guided by expert knowledge, which is generated by dynamic programming under various standard driving conditions. The expert knowledge is represented as the optimal power allocation mapping. Secondly, at the early imitation stage, the action of the reinforcement learning agent approaches the optimal power allocation mapping rapidly by using adversarial networks. Thirdly, a dynamic imitation weight is developed according to the Discriminator of adversarial networks, making the agent transit to self-explore the near-optimal power allocation under online driving conditions. Results demonstrate that the proposed strategy can accelerate the training by 42.60% while enhancing the reward by 15.79% compared with traditional reinforcement learning. Under different test driving cycles, the proposed method can further reduce the battery capacity loss cost by 5.1%–12.4%.
Keywords: Energy management; Imitation learning; Deep reinforcement learning; Hybrid energy storage system; Battery degradation; Generative adversarial imitation learning (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924022153
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022153
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124832
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().