A stochastic flexibility calculus for uncertainty-aware energy flexibility management
Michael Lechl,
Hermann de Meer and
Tim Fürmann
Applied Energy, 2025, vol. 379, issue C, No S0306261924022906
Abstract:
The increasing share of volatile renewables in power systems requires more reserves to balance forecast errors in renewable generation and power fluctuations. In contrast, common reserves such as gas-fired power plants are phased out, impeding the procurement of sufficient reserves. Alternative reserves, particularly on the demand side, such as battery storage systems, also exhibit some degree of freedom to deviate from their scheduled operating point to supply or consume more or less power, thus providing a flexibility potential. However, demand-side flexibility potentials are generally subject to uncertainties, and so is the generation of volatile renewables. The challenge is incorporating the uncertainties on both sides to procure sufficient (uncertain) flexibility potential in advance. Considering uncertainty is important to avoid additional, drastic measures in real-time to balance generation and demand, such as curtailing renewable generation or load shedding. This work presents a stochastic flexibility calculus that provides an indicator for computing the risk of insufficient flexibility potentials or, conversely, guarantees for sufficient flexibility potentials. Thus, the stochastic flexibility calculus contributes to overcoming the challenge of procuring sufficient flexibility potentials in renewable-based systems. An evaluation based on real data is performed using an example of a renewable energy community consisting of households equipped with photovoltaic power plants and battery storage systems. The newly introduced stochastic flexibility calculus computes the number of households that must operate their battery storage systems flexibly to balance forecast errors locally. The results show that the forecast method significantly influences this number. Some numerical results appear unexpected, as too many flexibility-friendly households can negatively impact the aggregated household flexibility potential.
Keywords: Stochastic network calculus; Probabilistic flexibility guarantees; Power system flexibility; Renewable energy community; Uncertainty modeling; Battery storage system (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924022906
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022906
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124907
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().