Pore-scale study of liquid water transport in gas diffusion layers with in-plane non-uniform distributed pore size of polymer electrolyte membrane fuel cell
Tao Lai,
Zhiguo Qu and
Jianfei Zhang
Applied Energy, 2025, vol. 379, issue C, No S030626192402316X
Abstract:
Timely removal of liquid water and the supply of the reaction gas in the gas diffusion layer (GDL) plays a critical role in improving the performance of polymer electrolyte membrane fuel cells (PEMFCs). Modifying the design of the GDL structure is an effective strategy for regulating the percolation process of liquid water and the supply of reaction gas. In this study, several GDLs with in-plane nonuniformly distributed pore sizes were designed to construct an ordered liquid water transport pathway. Two pore-size patterns with a “V” shape and an inverted “V” shape were designed through the orientation control of fiber distribution. In the inverted V-shaped pattern, the pore size exhibited a wave crest distribution along the in-plane direction, whereas, in the V-shaped pattern structure, the pore size was troughed along the in-plane direction. The three-dimensional (3D) multiphase Lattice Boltzmann method (LBM) and 3D diffusion LBM were used to investigate the liquid water percolation process and the reaction gas transport process in the GDL, respectively. The numerical results indicated that liquid water tends to concentrate in layers with macropores in the nonuniform GDL. Compared with the uniformly distributed GDL, these two pore size patterns can accelerate the drainage velocity and lower the water content. The reversed V-shaped pattern was further optimized to obtain the optimal width of the layers with macrospores. The results showed that a length of 96 μm is recommended to balance the concentrated effect and low-concentration areas. Under dry conditions, the gas transport capacity was insensitive to pore size distribution, whereas, under partially saturated conditions, both the V-shaped and inverted V-shaped structures of a nonuniform design weakened the impeding effect of liquid water on the gas supply. Moreover, the effective gas diffusion coefficient of the nonuniform study can reach up to 3.85 times of the uniform structure. This work promotes the understanding of different in-plane distributed pore size styles on the water percolation behavior in the GDL, thereby contributing to the optimal design of the GDL and PEMFCs.
Keywords: Gas diffusion layer; Liquid water directional flow; Lattice Boltzmann method; In-plane distributed pore size; Effective gas diffusion coefficient (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192402316X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:379:y:2025:i:c:s030626192402316x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124933
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().