EconPapers    
Economics at your fingertips  
 

Multi-objective hierarchical energy management strategy for fuel cell/battery hybrid power ships

Hanyou Liu, Ailong Fan, Yongping Li, Richard Bucknall and Nikola Vladimir

Applied Energy, 2025, vol. 379, issue C, No S0306261924023651

Abstract: The energy management strategy and the local controller in the ship energy management system are interconnected, impacting the performance of the hybrid propulsion system. To achieve the efficient operation of the hydrogen fuel cell (FC) and battery hybrid power system, based on the modelling and analysis of the hybrid power system, a nonlinear model predictive control (NMPC) based energy management strategy is proposed, and a dynamic virtual impedance droop controller and a classical proportional-integral (PI) controller are designed as local controllers. By simulating the designed random load conditions, pulse load conditions, and actual sailing conditions using hardware-in-the-loop (HiLs) technology, six different energy management strategies and their comprehensive performance with local controllers are compared and analysed. Comparing performance in terms of energy consumption, operating pressure, control accuracy, real-time performance, and robustness, it has been proven that the energy management strategy based on NMPC, coupled with a PI controller, is superior to other strategies overall. It can balance hydrogen consumption and the stable operation of the hybrid power system. Compared to existing energy management strategies, the proposed NMPC+PI strategy can reduce hydrogen consumption by 7.00 % and 40.29 %, and FC operating pressure by 44.96 % and 49.88 %, respectively, under both designed navigation conditions and actual navigation conditions.

Keywords: Hydrogen fuel cell; Hybrid power system; Ship energy management; Hierarchical control; Hardware-in-the-loop simulation (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924023651
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023651

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124981

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023651