Performance of district energy system under changing climate: A case study of Shenzhen
Pengyuan Shen,
Yuchen Ji and
Menglei Zhong
Applied Energy, 2025, vol. 379, issue C, No S0306261924023705
Abstract:
The impacts of climate change on the economic performance of different district energy systems (DES) are rarely evaluated. In this research, the performance of both conventional and combined heat and power systems (CCHP) are simulated and compared by modeling and analyzing the DES. Building simulation is conducted by using the downscaled future hourly weather data in the period of 2050–2060 under two future climate scenarios. Optimal sizing and operation schedule of the DES are determined in both current and future climate. Lifetime annualized heating and cooling per area cost (HC) is used to compare the economic performance of the district system. It is found that the annul cooling load in RCP4.5 and RCP8.5 increases by 6 % and 9.68 %. The HC of the conventional system ranges from 122.72 Yuan/m2 to 141.1 Yuan/m2 with a range of profit rate from 5 % to 20 % under various climate scenarios, and that number for the CCHP is from 72.36 Yuan/m2 to 95.24 Yuan/m2. Compared with the conventional system, the optimal CCHP system charges 32.5 % to 41 % less on the building end users if the lifetime profit rate is to be maintained between 5 % to 20 %.
Keywords: District energy system; Climate change; Building energy use; Lifecycle analysis; Combined heat and power; Ice thermal storage (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924023705
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023705
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124986
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().