Gearbox pump failure prognostics in offshore wind turbine by an integrated data-driven model
Wanwan Zhang,
Jørn Vatn and
Adil Rasheed
Applied Energy, 2025, vol. 380, issue C, No S0306261924022128
Abstract:
Offshore wind turbines face substantial challenges in operation and maintenance due to the harsh marine environment and remote locations. Predictive maintenance, encompassing fault diagnostics and failure prognostics, is a promising maintenance strategy to address these challenges. To contribute to this strategy, an integrated data-driven model is developed for probabilistic failure prognostics at the component level. The remaining useful life of a gearbox pump in an offshore wind turbine is predicted accurately based on supervisory control and data acquisition data. In this approach, light gradient boosting machines are tuned to model normal temperatures. The gated recurrent unit outperforms other neural networks and is selected to process temperature residuals with a Bayesian neural network. Results show that the prediction at the 50% percentile precedes the true failure time by 3.83 h. Moreover, there is 97.5% confidence that the true failure time falls within around ± 5.3 h of the predicted time. Furthermore, the earliest alarm is issued at the 2.5% percentile, precisely 9.17 h prior to the true failure time. This study demonstrates the effectiveness of supervised learning and normal behavior modeling for probabilistic failure prognostics of offshore wind turbine components.
Keywords: Remaining useful life; Offshore wind turbine; Gearbox pump failure; Machine learning; Temperature analysis; Normal behavior modeling (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924022128
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:380:y:2025:i:c:s0306261924022128
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124829
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().