Probabilistic geo-referenced grid modeling: A Bayesian approach for integrating available system measurements
Domenico Tomaselli,
Paul Stursberg,
Michael Metzger and
Florian Steinke
Applied Energy, 2025, vol. 380, issue C, No S0306261924022967
Abstract:
With the ongoing implementation of new climate targets, power distribution grids are increasingly integrating behind-the-meter photovoltaic (PV) systems, electric vehicle (EV) home chargers, and heat pumps (HPs). The integration of these solutions can often result in grid congestion issues, requiring appropriate mitigation measures. Designing these measures can be challenging in the absence of a digital and up-to-date model of the existing infrastructure, which is often the case at the low-voltage (LV) level. In this work, we introduce a novel two-stage Bayesian approach for establishing a probability distribution of geo-referenced power flow (PF)-ready grid models using available system measurements. We demonstrate the proposed approach in a residential region in Schutterwald, Germany. We find that integrating available system measurements can effectively enhance the quality of the distribution, yielding potential grid models that more accurately align with the existing infrastructure. Moreover, we showcase the practical utility of the proposed approach for assessing overvoltage within a specific grid segment subject to high rooftop PV adoption. While state-of-the-art baselines either fail to identify any overvoltage issues or are inconclusive, integrating available system measurements using the proposed approach offers a more reliable assessment.
Keywords: Bayes’ theorem; Grid model identification; Probabilistic modeling; System measurements (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924022967
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:380:y:2025:i:c:s0306261924022967
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124913
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().