Robust preventive and corrective security-constrained OPF for worst contingencies with the adoption of VPP: A safe reinforcement learning approach
Xiang Wei,
Ka Wing Chan,
Guibin Wang,
Ze Hu,
Ziqing Zhu and
Xian Zhang
Applied Energy, 2025, vol. 380, issue C, No S0306261924023547
Abstract:
The rising frequency of extreme weather events calls for urgent measures to improve the resilience and reliability of power systems. This paper, therefore, presents a robust preventive-corrective security-constrained optimal power flow (PCSCOPF) model designed to strengthen power system reliability during N-k outages. The model integrates fast-response virtual power plants (VPPs), dynamically adjusting their injections to mitigate post-contingency overloads and maintain branch flows within emergency limits. Additionally, a novel approach combining deep reinforcement learning (DRL) with Lagrangian relaxation is introduced to efficiently solve the PCSCOPF decision-making problem. By framing the problem as a constrained Markov decision process (CMDP), the proposed Lagrangian-based soft actor-critic (L-SAC) algorithm optimizes control actions while ensuring constraint satisfaction during the exploration process. Extensive investigations have been conducted on the IEEE 30-bus and 118-bus systems to evaluate their computational efficiency and reliability.
Keywords: Lagrangian relaxation; Deep reinforcement learning; Security-constrained optimal power flow; Virtual power plant (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924023547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023547
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124970
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().