EconPapers    
Economics at your fingertips  
 

Experimental demonstration and validation of tubular solar cavity receivers for simultaneous generation of superheated steam and hot air

Yasuki Kadohiro, Timo Roeder, Kai Risthaus, Dmitrij Laaber, Nathalie Monnerie and Christian Sattler

Applied Energy, 2025, vol. 380, issue C, No S0306261924024267

Abstract: Cavity receivers with absorber tubes inside the solar tower systems are the most studied and suitable concept for supplying such hot steam and air due to its design flexibility and efficiency. However, a receiver concept of simultaneously generating high-temperature steam and air has not been experimentally studied on scales beyond laboratory scale. Therefore, our study focused on the experimental demonstration for such receiver concept and the validation of the developed numerical model. Experimental results demonstrated that the proposed receiver concept (i.e. a cavity receiver with cylindrical and conical helical tubes) with 70 kWth nominal power can simultaneously produce high-temperature steam (811 °C) and air (863 °C) with standard deviations of less than 3 °C (outlet temperature), 3 kPa (outlet pressure), and 0.2 kg/h (mass flow rate). Comparison of experiments and simulations proved to be in very good agreement, with errors of less than 10 %. The results presented here provide a basis for future scale-up and demonstrate the high potential of combining concentrating solar thermal technology with high-temperature electrolysis for the mass production of green hydrogen.

Keywords: Solar cavity receiver; Helical absorber tubes; Superheated steam; Hot air; Experimental demonstration; Green hydrogen (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924024267
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024267

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.125042

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024267