Wind tunnel study of wind turbine wake characteristics over two-dimensional hill considering the effects of terrain slope and turbine position
Yao Chen,
Bowen Yan,
Meng Yu,
Guoqing Huang,
Guowei Qian,
Qingshan Yang,
Kai Zhang and
Ruiyu Mo
Applied Energy, 2025, vol. 380, issue C, No S0306261924024280
Abstract:
Wake interference between turbines in wind farms can lead to significant losses in the overall power output from farms. In this study, the wake characteristics of wind turbines at different positions on two-dimensional hills with different slopes were investigated using a systematic wind tunnel test, where the hub of wind turbine and hills have the same height of 250 mm and the rotor diameter is 400 mm. Firstly, a novel normalization method to fairly evaluate the wake velocity deficit of turbine at different potions over hills was proposed. The wake of wind turbine sited at a hilltop was found to be much more affected by the terrain compared to that of wind turbine located in front of or behind the hill. Subsequently, the effect of terrain on wind turbine wakes, including velocity deficit and added turbulence intensity, were systematically analyzed. The slope of the hill mainly affected the wind turbine wake in the leeward side. The wake flow became wider and the peak value of added turbulence intensity was larger when the turbine located at the hilltop of gentle hill. However, for the steep hill case, the wind turbine wakes recovered faster than that in flat and gentle hill case. Finally, the performance of three typical wake models of velocity deficit and two models of added turbulence intensity were evaluated by using the experimental data. When the turbine was located at the hilltop, the conventional wake models for turbine over flat terrain cannot be directly applicable to the steep hill case as well as the gentle hill case. The Ishihara-Qian model gave reasonable distributions for the added turbulence intensity, except that in the steep hilltop case. Results of this study can provide guidance for the micro-siting arrangement and control strategies of wind turbines in wind farms sited on complex terrain.
Keywords: Wind turbine wake; Complex terrain; Velocity deficit; Added turbulence intensity; Wind tunnel experiment (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924024280
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024280
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.125044
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().